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Abstract

Mobile applications today often fail to be context aware when

they also need to be customizable and efficient at run-time.

Context-oriented programming allows programmers to de-

velop applications that are more context aware. Its central

construct, the so-called layer, however, is not customizable.

We propose to use novel persistent contextual values for mo-

bile development. Persistent contextual values automatically

adapt their value to the context. Furthermore they provide

access without overhead. Key-value configuration files con-

tain the specification of contextual values and the persisted

contextual values themselves. By modifying the configura-

tion files, the contextual values can easily be customized for

every context. From the specification, we generate code to

simplify development. Our implementation, called Elektra,

permits development in several languages including C++ and

Java. In a benchmark we compare layer activations between

threads and between applications. In a case study involving

a web-server on a mobile embedded device the performance

overhead is minimal, even with many context switches.

Categories and Subject Descriptors H.2.3 [Languages]:

Persistent programming languages

Keywords configuration specification, benchmark

1. Introduction

Context-oriented programming (COP) aims at software mod-

ularization, with focus on considering contextual behavior [4].

It enables us to implement context-aware behavior separately.

Central to COP are layers, i.e. the modules for such code.

Active layers encode the current context of an application.

Contextual values (CVs) are variables whose values de-

pend on context, i.e. active layers. CVs fit nicely into COP

ideas because of their seamless integration with layers. Side-
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effects of CVs are limited to their respective context. Their

main advantage is their simplicity because CVs “boil down to

a trivial generalization of the idea of thread-local values” [16].

Currently many COP languages do not provide straight-

forward, context-aware activation of layers. Instead they

mainly support code-snippets for activation [6], e.g.:

activate (Austria) if (gps_pos =="austria")

In this example, we activate the layer Austria according

to the current GPS position. Developers can easily miss

some context information at some places, considering that

activations are spread across the whole source code.

Another problem COP languages currently face is that

layer information cannot easily be shared between applica-

tions. Solutions with context-oriented middleware are often

not light-weight and need special tools for introspection and

debugging. We propose to persist layer information into con-

figuration files. While it is well-known how to persist objects,

we lack similar techniques for layers. Because of this issue,

it is difficult to separate context sensors and applications. Of-

ten the same sensed context, however, is needed in several

applications which leads to duplication of efforts.

In this paper we describe the novel idea to use persistent

contextual values for layer activation. Our goal is to combine

layer activations with CVs that are shared across applications.

In our approach we will use CVs as parameters for activate

and with constructs. COP languages commonly use these

constructs for layer activation [6].

Our main contribution is a fully implemented framework

fulfilling the above goals. It has already successfully been

used in embedded systems. It does not make any assump-

tions of the application’s architecture. Our implementation

provides (1) generated CVs to be used like variables, and

(2) initialization, persistency, and notification for them. It

supports many languages, including C++ and Java.

Because CVs are context-aware they will automatically

consider their context. By persisting CVs we synchronize

layer activations between applications. Our technique even

works across different programming languages.

To be better suitable for mobile development one addi-

tional goal is that accessing CVs should not add overhead.

Instead it should deliver the same performance as reading na-



tive variables. Thus our approach relies on explicit activation

and a cache for every CV [14].

We avoid the if in the Austria layer activation above.

Instead we would activate the contextual value position:

activate (position)

This way, due to CV semantics, contexts of position are

automatically considered. The contextual value would be

persistent and shared between applications. When a context

sensor has new information available, other applications

would be notified via our framework.

For example, think about internationalized software. CVs

help us to easily show correct translated messages. Currently,

however, we have to activate the correct layers in every COP

application individually. There was no easy way for one

application to tell all other applications that the language

has changed. We want to be able to activate layers with CVs:

1 void greet(Person & p, Language & lang) {

2 p.activate(lang)

3 cout << p.greeting << endl;

4 }

A code generator yields the classes Person and Language.

They implement CVs semantics. In the Line 2 we activate the

contextual value lang. A previously persisted value initial-

izes CVs at application startup. This initialization provides

sensible defaults changeable by user settings or context.

We answer the following research questions:

RQ1 : How can contextual values be used for layer activa-

tion? Which limitations does it have?

RQ2 : What are the costs of inter-process layer activation?

The questions are significant because it is common that we

face a number of applications and programming languages

in our system. Such a combination, however, currently is not

well supported by COP. Our idea is not only feasible but

practical as demonstrated by a prototype.

The paper is structured as follows: In Section 2 we explain

the background. In Section 3 we elaborate our approach and

in Section 4 we evaluate it. After considering related work in

Section 5, we conclude in Section 6.

2. Background and Syntax

We implemented our approach as tool called Elektra. In this

section we will explain the essence and syntax previous

versions of Elektra. Earlier versions lacked possibilities to

use CVs for activations and needed extra layer specifications.

CVs are very useful to interact with a program execution

environment (PEE), i.e. configuration files and environment

variables. CVs ensure that the context always is taken into

account when accessing the PEE. PEE is an elegant way to

persist CVs: we write key-value pairs into configuration files.

For PEE the performance focus lies on retrieving values.

Modification of the PEE is usually only done manually

by users when they change settings. Thus, when changing

PEE, proper validation is more important than performance.

In earlier work we demonstrated that PEE can be tightly

integrated with CVs [10, 14]. We propose the adoption of

PEE as CV storage and maintain the goal to have fast access

when reading CVs.

In our approach, a small library abstracts from syntax

and location of the configuration files. Elektra uses the

PEE, such as configuration files, to initialize contextual

values. Elektra supports over 190 configuration file formats,

including INI, XML and JSON formats. In this paper we will

use a simple key-value syntax to illustrate the content of the

key-value database. To easily distinguish configuration and

its specification in this paper, we use: (1) assignment with =

for configurations containing the values of every CV, (2) keys

written in [] and assignment with := only for specifications:

1 path/key=value

2 [path/key]

3 property1 := propvalue1

4 property2 := propvalue2

In the first line of the example above we configure the op-

tion identified with the key path/key. As hierarchy separator

we use /. The key key is below path and has the value value.

In lines 3 and 4 we specify two properties for the same key

path/key: they are called propertyN and have respective

values propvalueN . The key, value and the properties are

stored in the key-value database, for example:

1 /*/*/person/greeting=Hi!

2 /german/*/person/greeting=Guten Tag!

3 /german/austria/person/greeting=Servus!

In this example, the CV has 3 different possible values

with * as wildcard expression. Furthermore, within the same

configuration files, we can also specify contextual values. For

example, we specify the CV greeting:

1 [/%language%/%country%/person/greeting]

2 type := string

3 description := hello in all languages

The respective key in Line 1, i.e. the full string within

[], is a contextual value’s name. Lines 2-3 further specify

the contextual value with := assignment. Here we specify

that the CV greeting has the type string. In Elektra a code-

generator synthesizes context-aware classes using contextual

value specifications. The tool generates the code for the

underlying CV-classes Person and Greeting.

Often it is useful to give layers a name [6]. Our approach

consistently gives every layer a name, written within []. All

generated classes are nested in one hierarchy with / as root.

A single CV has many values for each context. In the

specification strings enclosed in %...%, e.g. %language%, are

placeholders for layer values. For contextual interpretations

we substitute the placeholders with values given by layers.

Unique keys to lookup individual values are determined by



substituting all placeholders with values from the layers. We

use these keys to lookup values in the configuration files.

When no layer was found, the * in the configuration file

will match. The character means that the layer is inactive

or empty. In the above example, if the only active layer is

language with the value german, an instance of the class

Greeting has the value Guten Tag!.

Developers directly utilize the contextual values in their

own code. CVs are used in the same way as variables. As

example we extend our previous C++ snippet:

1 void visit(Person & p) {

2 p.context ().with <CountryAustriaLayer >()

3 .with <LanguageGermanLayer >()([&] {

4 cout << "visit " << ++p.visits

5 << " in "

6 << p.context ()["country"]

7 << ": " << p.greeting << endl;

8 });

9 }

The Person-object p is a contextual value passed via

reference parameter on Line 1. Dynamically scoped con-

text is specified via the with construct in lines 2 and 3.

CountryAustria and LanguageGerman are layers, but not per-

sistent contextual values. Within the dynamic scope of the

block after with statements, the content of CVs can differ.

For example, when we modify the nested contextual value

visits in Line 4, the changes are only visible within the with

block. In Line 8, the previous values are restored.

Our approach has introspection capabilities. We easily can

inquiry layer information as done in Line 6. The introspection

is useful for debugging and assertions [14].

The issue with the former approach is the implementation

of the layers used in lines 2 and 3. The previous approach

forced us to implement a layer for every contextual variation.

Developers needed to manually implement features such as

thread safety, contextual awareness and persistence for every

layer. With many layers for highly-dynamic context-aware

applications their implementation can be a burden. In this

paper we describe how we can avoid this extra effort and

exclusively use CVs specified in configuration files.

3. Inter-process Layers

We extend Elektra with the possibility to directly activate CVs.

We consider a layer to be active, when a CV is non-empty.

As side-effect, this idea enables inter-process activation of

layers because of the persistency of CVs. To synchronize

layers with CVs we lack two essential features:

• We need an intra-process notification which allows us to

update the context of CVs when other CVs, representing

layers, change.

• We need an inter-process notification to know when to

reread configuration files.

3.1 Contextual Activation

One of the main benefits of activation of CVs is that we

automatically get contextual activation. We do not have to

worry for every activation if every dependent context is

considered. For example, we have the following CVs:

1 [/location]

2 type := Position

3 description := GPS position

4 [/%location%/country]

5 type := string

And we want to successively activate these CVs:

1 void greet (Person & p,Country & country ,

2 Location & location) {

3 p.activate(country );

4 p.activate(location );

5 cout << p.greeting << endl;

6 }

If location and country were layers as described in

background exactly these layers would be activated in the

given order. This means that the activation in Line 3 will not

consider the location activated in Line 4.

But because location and country are CVs, they take

context into account and the activations influence each other.

In this example after the activation of location, country

will be updated according the new position. Line 4 will also

update the Country layer according to the established context.

For example, if location is an empty string, no layer is

activated. With symbolic links in the CVs specification [11]

one can implement even more complex scenarios. In Line

5 the greeting will be according to local customs or some

default if the CVs country and location are inactive.

The value of CVs usually is determined by context sensors

that run as separate active processes. Their task is to track low-

level sensor values such as GPS and pool them to high-level

context as needed by other processes. The main advantage

of this approach is the reuse of context information and the

decoupling between processes.

3.2 Specification

For convenience we decided that by default the last part (sep-

arated with /) of the key is the layers’ name. We already

established that the keys are specified within []. This conven-

tion gives most CVs an appropriate layer name:

1 [/%language%/country]

In above example, the CV-class Country will automati-

cally have the layer name country when activated. In some

situations the last part of the name is not the right choice. For

example, we use a country code to determine a country:

1 [/%language%/country/code]

2 type := string

3 layer/name := country



Layer names, unlike CV-classes, do not provide a hierar-

chy. We likely do not want the layer to be named code, thus

we rename it to country as specified by layer/name. Then

activation of such a CV activates the layer country.

3.3 Intra-process Notification

In previous versions of Elektra it was assumed that every

change of a CV is caused by the assignment to a CV. In this

extension we avoid this assumption. We introduce a reload

mechanism when the underlying persistent CVs change.

We implement such a mechanism by an intra-process

notification. For this functionality we use the observer pattern.

The CVs act as observers, the context is the concrete subject.

For in-memory synchronization the method sync can be used:

1 void doSync(Country const& c) {

2 kdb.get(c.values ());

3 c.context (). sync ();

4 // c and other CV are updated

5 // and different layers are active

6 }

In Line 2 we fetch all values for every context from the

configuration files. In Line 3 we call the in-memory update of

all CVs to reload their value. The sync invocation also makes

sure that the correct layers are active.

The persistency layer has two further methods for synchro-

nization in both directions: With kdb.get modified configu-

ration files are parsed, with kdb.set changes are written to

the configuration files. This way the application developer

decides about the behavior in the case of conflicts. Because

a three-way merge is the most-requested behavior, a conve-

nience API exists for this case.

Because we want CVs to act as layers we cannot update

the observers in an arbitrary order. Instead we need to con-

sider the dependencies between CVs. CVs with placehold-

ers depend on CVs that have the placeholders name as their

layer name. For example, Country needs to be updated before

Location because Country has %location% as dependency.

We start by updating CVs that do not have dependencies.

Then we update CVs that are dependent on layers that were

updated before. Elektra solves this ordering problem with a

topological sort based on Kahn [5].

Because in our approach hooks can be registered to be

executed on layer activation [10], users might need a specific

order. Thus users can describe a specific order of activation.

For example:

1 [/country]

2 layer/order :=0

3 [/language]

4 layer/order :=1

In the example, no dependency is given. Thus any order

would be correctly topological sorted. But because of the

users preference in layer/order, country is activated be-

fore language. This way the user can be sure that country

hooks would be executed before language hooks. If the

layer/order conflicts with topological sort, layer/order

can only be fulfilled partly and a warning is emitted.

With layers and CVs as completely separate concepts

cycles were not possible: CVs depended on layers, but not

the other way round. An issue of our approach is that we

introduce potentially cyclic dependencies. For example:

1 [/%country%/language]

2 type := string

3 [/%language%/country]

4 type := string

If we activate country we would need the value of the cur-

rent language layer and vice-verse. Note that layer/order

introduced before does not help with this issue. With specific

values stored, every activation leads to toggling values:

1 /swiss/language=de

2 /luxembourg/language=fr

3 /fr/country=swiss

4 /de/country=luxembourg

Such cycles usually stem from design errors and are un-

wanted. In our approach we prohibit such cycles. We intro-

duce a limitation that causes some previously valid specifica-

tion files to be rejected. These cases can already be detected

when parsing the specification. If the specification neverthe-

less is faulty, the user will receive a run-time exception.

3.4 Synchronization Points

Because CVs are frequently accessed, we want to avoid any

overhead when reading the value of CVs. We achieve this

behavior by requiring the developer to define synchronization

points. At synchronization points new values are pushed to

CVs using the observer pattern. Only during synchronization

points performance overhead occurs. Otherwise reading CVs

has the same overhead as accessing native variables [14].

Another advantage of explicit synchronization points is that

the user has full control over costs occurring in the program.

Making synchronization points explicit might seem to be

cumbersome to program. But in practice it is often obvious

where synchronization should occur: when a user starts a new

interaction. With a use-case-based software engineering ap-

proach one can systematically find all such places. Forgetting

about a synchronization point will only affect the specific

interaction. In mostly single-threaded applications, which do

not sense context itself, it is even simpler: one only synchro-

nizes the main-thread when the application is notified.

The synchronization points define when intra-process

updates will take place. The context will push all changes to

the respective CVs. For example:

1 void userInteraction(Accuracy const& a) {

2 a.context (). sync (); // a might change

3 for (long i=0; i<a; ++i) {

4 /* a does not change here */ }

5 }



In the example above, we introduce a synchronization

point in Line 2. All mentioned reloading features only happen

during this invocation. The contextual value a is not modified

by context changes or changes of persistent CVs at other

places. This means, that the programmer can be sure that a is

not changed during the loop starting on Line 3.

3.5 Assignment

Another property of our approach is that after an initial

activation, every (de)activation can occur via changing the

values of CVs:

1 void assignLanguage(Language & lang) {

2 lang.context (). activate(lang);

3 lang = "";

4 // layer lang deactivated

5 lang = "spanish";

6 // layer switch to spanish

7 lang.context (). deactivate(lang);

8 lang = "english";

9 // layer still deactivated

10 }

The precondition that layers are influenced via assign-

ments is fulfilled in Line 2. In Line 3 we see an assignment

to an empty string. Layers with an empty value influence

CVs in the same way as deactivated layers. But only after

explicit deactivation in Line 7, changes of the CV lang do

not influence other CVs anymore.

Synchronization via sync activate or deactivate layers in

the same way as the assignment does. One can think of sync

as correctly ordered assignment of every CV.

3.6 Inter-process Notification

Because of diverse requirements we took care that Elektra fol-

lows very modular design principles [9, 12]. The inter-process

notification requirements differ from system to system. We

decided to implement inter-process notification in plugins.

Whenever a process modifies the underlying configuration

files plugins take care of notification. It is trivial to include

notification mechanism that already implement a message bus.

In the plugin you only have to publish the message without

any further concerns. In every interested process one has to

implement a listener that fetches the updated configuration.

After every thread has passed a synchronization point, the

application is fully updated to the new configuration.

Implementing an inter-process notification without a mes-

sage bus is more challenging. Nevertheless such an endeavor

is useful for legacy applications. Notification via signals are

very popular because they are part of C89 and POSIX.

The idea is that every process using Elektra registers its

process identifications (PIDs) at startup. Whenever configu-

ration files change, a plugin sends a signal to all registered

PIDs. Within individual applications one has to install a sig-

nal handler. The signal handler is limited to atomic changes.

Thus it can only flag that such an event occurred and other

threads can pickup the changes later.

The update to current persistent CVs themselves is via

kdb.get as shown before. On conflicts Elektra usually uses

a three-way merge to not lose data on concurrent updates of

other processes.

4. Evaluation

We benchmarked Elektra on a hp R© EliteBook 8570w using

the central processor unit (CPU) Intel R© Core
TM

i7-3740QM

with 4 cores @ 2.70GHz. The operating system was Debian

GNU/Linux Jessy 8.4 amd64. We used the compiler gcc

4.9.2-10.

4.1 Microbenchmarks

We start with microbenchmarks that measure the cost of

different synchronization methods. As we see hard coded in

the code snippets below, we used 1000 iterations. We only

show the mean value of the 11 measurements we did for

every microbenchmark. We created four microbenchmarks

for each line in Figure 1. We designed the microbenchmarks

in a way that they are valuable for the decision when which

activation strategy should be used. First we start to explain

the individual microbenchmarks, then discuss the results. For

all four microbenchmarks we will use the same setup:

1 Context c;

2 Timer t;

3 CV tcv;

The first test, called benchmarkActivate, measures activa-

tion with layers. In Line 2 we start the measurement and stop

it at Line 10. In lines 5-7 the relevant action takes place. In

Line 8 another contextual value gets accessed to avoid too

aggressive compiler optimizations. Note that reading Elektra

CVs is without any overhead compared to access of native

variables, so the Line 8 does not influence the benchmark

measurable:

1 void benchmarkActivate(CV & cv) {

2 t.start ();

3 for (long i = 0; i < 1000; ++i)

4 {

5 if (n>0) c.activate <Layer0 >();

6 // ..

7 if (n>N) c.activate <LayerN >();

8 x ^= tcv + tcv;

9 }

10 t.stop ();

11 }

In the second microbenchmark (benchmarkActivateCV),

we used the CV-activation feature introduced in this paper.

In the relevant lines 5 to 7, we now have activation of 0 to

N CVs. In this benchmark, activation of layers only happens

implicitly. Note that again the numbers of activations increase

with the number of CVs:



1 void benchmarkActivateCV(vector <CV >& cv){

2 t.start ();

3 for (long i = 0; i < 1000; ++i)

4 {

5 if (n>0) c.activate(cv[0]);

6 // ..

7 if (n>N) c.activate(cv[N]);

8 x ^= tcv + tcv;

9 }

10 t.stop ();

11 }

As third benchmark, we used the sync feature introduced

in this paper. The synchronization in Line 6 will synchronize

all N different CVs. In this benchmark we do not reload from

persistent storage. Nevertheless, the implementation must

recalculate every activation of every CV.

1 void benchmarkSync(vector <CV> & cv) {

2 // cv contains 0..n-1 CVs

3 t.start ();

4 for (long i = 0; i < 1000; ++i)

5 {

6 c.sync ();

7 x ^= tcv + tcv;

8 }

9 t.stop ();

10 }

In the last microbenchmark, we fully reload configuration

files from disk. The challenge of this benchmark is an

optimization of Elektra. The operation to fetch data from

persistent storage would not reload without changes. Thus

we used for every iteration a different handle to fetch from

persistent storage (lines 2 and 3). This ensures that the

configuration file is actually reread:

1 void benchmarkReload(vector <CV> & cv) {

2 vector <kdb::KDB > kdb;

3 kdb.resize (1000);

4 t.start ();

5 for (long i = 0; i < 1000; ++i)

6 {

7 kdb[i].get(c.values(), "/test");

8 c.sync ();

9 x ^= tcv + tcv;

10 }

11 t.stop ();

12 }

We see in Figure 1 that the overhead increases linearly the

more CVs or layers are involved. More flexible activation

scenarios are more expensive. Especially, reloading from

configuration files introduces a relatively large, but constant,

offset. Note that we used a text configuration file parser.

4.2 Case Study

In a case study we implemented a web server that outputs

localized HTML pages. Remote users can connect to the
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Figure 1. Comparison of 1000 iterations in four setups: by

using reloading from persistent storage (reload), syncing all

CVs in memory (sync), activation of CVs (activate CV),

and only switching layers (activate). We vary the number

of activations or CVs.

web server that is installed on an embedded device. For

localization and session handling the web server heavily

relies on CVs. Because of the features CVs provide, these

parts were trivial to implement. Additionally the web server

works together with context sensors that modify persistent

CVs. For example, one sensor detected motion.

During implementation we found CVs very useful. The

specification file was 87 lines and contained 17 CVs. From

this specification file 3623 lines of code defining all CVs as

classes in one large hierarchy were generated. The boilerplate

code (lines 1 to 10) left to write is minimal:

1 #include <kdbenvironment.hpp >

2 #include <kdbparse.hpp >

3 Coordinator c;

4 using namespace kdb;

5 int main(int argc , char**argv) {

6 KeySet ks;

7 ThreadContext tc(c);

8 parseConfigfiles(ks);

9 parseCommandline(ks , argc , argv);

10 Environment env(ks, tc);

11 // the rest of the program. e.g.:

12 visit(env.person );

13 }

In Line 12 we see how we can access CVs in the hierarchy.

We call the function we defined earlier in the paper.

For the benchmark we created one additional thread. In

the thread the web server periodically syncs with persistent

changes in the same way as benchmarkReload does. We

found out that beginning with 2200 requests/seconds the

reply/seconds did not increase significantly anymore. To

measure if context changes influence the functionality of

the web server we used httperf on the same machine l:



1 httperf --hog --timeout =1 --rate =2200

2 --num -conn =50000 --num -call=1 --server=l
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Figure 2. Request/reply rate of a web server. The sync

time is a sleep interval in milliseconds to wait for the next

synchronization with persistent CVs.

As you see in Figure 2 the sync rate barely has influence

on the request and replies the web server can deliver. Only

at sync rates below 3 ms there is an effect. A possible

explanation is that other CPU cores can compensate easily

as long as the required lock during sync does not dominate.

Timeouts of requests were nearly always 0 except for sync

rates of about 3 ms or when influencing the setup. We see that

Elektra can be practically used for embedded applications

and that the number of context changes only has minimal

effect, even across applications.

5. Related Work

Löwis et al. [18] also implemented CVs. They call them

context variables. Their layer activation (they call it binding

of CVs) requires the programmer to explicitly declare layers.

Thus their approach is very similar to previous versions of

Elektra and would benefit from the approach described here.

Kamina et al. [6] proposed a generalized activation mech-

anism based on contexts and subscribers. Their implicit acti-

vation, however, has severe impact on the performance.

Very early work (1979) on contextual values is done by

Asirelli et al. [1]. Their contextual values are depending on

state. We could not find specific information, but their system

may have achieved something similar to Elektra. Different

from Elektra, they use context-value pairs which do not

encode variability information in their keys. Montangero et

al. [8] described garbage collection techniques for CVs.

Wang et al. [19] proposed a new metric useful for test-

ing context-aware applications. Information present in the

specification of Elektra helps to improve testing, too.

Elmongui et al. [3] described context-aware DBMS. Be-

cause Elektra focuses on persisting CVs the approaches seem

to be complementary: Such query languages could be an

extension for some use cases of Elektra.

We also proposed to move the context awareness to

a key-value database [13]. Using interception techniques,

unmodified applications were made more context aware.

Mens et al. [7] created a taxonomy of context-aware

software variability approaches. They explicitly mention

the execution environment to be an important source for

context. Based on the taxonomy, Elektra has a closed form

of variability, when only the values of CVs can change. Then

changes of behavior are limited to the code already present

in the program. Elektra has its focus on contextual (not

context) features. Elektra uses an one-branch context tree:

Without placeholders CVs are automatically non-context-

aware configuration items. Additionally, Elektra supports

programmer-declared dependencies.

Umuhoza et al. [17] compared different ways for code

generations on mobile development. Their methods do not

have specific support for context.

Williams et al. [20] and Biegel et al. [2] presented frame-

works for development of context-aware applications. Con-

textPhone [15] is a further prototyping platform for context-

aware mobile applications. Their approaches focus on devel-

oping context sensors, which complements our approach.

6. Conclusion

In this paper we presented the idea to use persistent contextual

values (CVs) as information source whether layers are active.

We discussed several benefits and limitations of the approach:

(1) The activations themselves take context into account.

(2) Persistent CVs can be used to synchronize layers across

different applications in different programming languages.

The approach simplifies taking current context into ac-

count and sharing context with other applications. Further-

more it provides support for individual customization. End-

users can add or redefine configuration in specific context.

In the benchmarks, we showed that activation of CVs

is not much more expensive than original layer-activation.

Synchronization of all CVs with configuration files, however,

is more costly. Luckily, the overhead is only constant. In a

real-world benchmark we showed that the sync rate barely

has an influence in a web-server setup.

Our contributions are:

1. This combination of performance, context awareness and

customization is unique to our approach.

2. Elektra enables programmers to use CVs with code gen-

eration in multi-threaded and multi-process applications.

CVs can even be shared across applications.

3. Our implementation is free software and can be down-

loaded from http://www.libelektra.org. It supports

mobile development in C++, Java and other languages.

4. In a case study we described our experience with mo-

bile development, and analyzed the performance in mi-

crobenchmarks and with a web server.

http://www.libelektra.org
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