
Unanticipated Context Awareness for
Software Configuration Access Using the
getenv API

Markus Raab

Abstract Configuration files, command-line arguments and environment variables

are the dominant tools for local configuration management today. When accessing

such program execution environments, however, most applications do not take con-

text, e.g. the system they run on, into account. The aim of this paper is to integrate

unmodified applications into a coherent and context-aware system by instrument-

ing the getenv API. We propose a global database stored in configuration files that

includes specifications for contextual interpretations and a novel matching algo-

rithm. In a case study we analyze a complete Debian operating system where every

getenv API call is intercepted. We evaluate usage patterns of 16 real-world appli-

cations and systems and report on limitations of unforeseen context changes. The

results show that getenv is used extensively for variability. The tool has acceptable

overhead and improves context-awareness of many applications.

1 Introduction

The goal of context-oriented programming (COP) is to avoid the tedious, time-

consuming and error-prone task of implementing context awareness manually, and

instead adapt the application’s behavior using the concept of layers [1, 12]. Each

layer represents one dimension of the context relevant to the application. Contextual
values [26] act as variables whose values depend on layers. A program execution
environment consists of the environment variables and key/value pairs retrieved from

configuration files. A program execution environment can be tightly integrated with

contextual values [20]. Context awareness [5] is a property of software and refers to

its ability to correctly adapt to the current context. Our aim is to make applications

context-aware that previously were not.

M. Raab (✉)

Institute of Computer Languages, Vienna University of Technology, Vienna, Austria

e-mail: markus.raab@complang.tuwien.ac.at

© Springer International Publishing Switzerland 2016

R. Lee (ed.), Computer and Information Science,

Studies in Computational Intelligence 656, DOI 10.1007/978-3-319-40171-3_4

41

42 M. Raab

For example, an important context for a browser is the network it uses. In a differ-

ent network, different proxy settings are required to successfully retrieve a web page.

We want the browser to automatically adapt itself to the network actually present, i.e.,

make it context-aware in respect to the network.

Although COP eases the writing of new software, there remains a huge corpus

of legacy software that cannot profit from context awareness. Our paper aims at

intercepting the standard API getenv in a way that COP-techniques are applied

to unmodified applications. We focus on getenv because we found that it is used

extensively. Our interception technique, however, does not make any assumption on

the API. We recommend to specify the values and the context of the program execu-

tion environments separately. This configuration specification contains placeholders,

each representing a dimension of the context:

[/ phone/call/vibration]
type=boolean
context =/ phone/call/% inpocket %/ vibration

In this example, vibration is a contextual value of type boolean and

%inpocket% a placeholder to be substituted in contextual interpretations. Thus,

the value of vibration changes whenever inpocket changes. E.g., when a con-

text sensor measures body temperature only on one side of the gadget, it will change

the value of %inpocket%. Thus, when the mobile phone is in the pocket, it will

turn on vibration. When the mobile phone is lying on a table, it will turn off vibra-

tion to prevent falling down when someone calls. If needed, users can even specify

further context. For example, some users dislike the context-dependent feature as

described. Our approach inherently allows users to reconfigure every parameter in

every context. To turn on vibration if the phone is not in the pocket, we configure

our device differently:

/phone/call/inpocket/vibration = off
/phone/call/notinpocket/vibration = on

In this paper we analyze the popular getenv() API. The function getenv()
is standardized by SVr4, POSIX.1-2001, 4.3BSD, C89, and C99. Because of this

standardization and ease of use it is adopted virtually everywhere, even in core

libraries such as libc. It allows developers to query the environment. Using stan-

dard getenv implementations developers have to act carefully: settings valid in the

current context can differ from those received through getenv. To reduce the dan-

ger of assuming wrong context information we propose to use a context-aware imple-

mentation. We implement it in the whole system by intercepting every getenv API

call. Our contributions are:

∙ We allow unmodified applications to use contextual values. In these standard

applications the developers did not initially think of context awareness.

∙ We conduct an extensive case study and analyze 16 applications and systems.

Unanticipated Context Awareness for Software Configuration . . . 43

These contributions are of practical relevance. While other approaches require code

rewriting [3, 4], our approach is suitable for legacy applications, flexible and open

for extensions. We tackle the research question: “How can we integrate unmodified

applications into a coherent, context-aware system?”

The paper is structured as follows: In Sect. 2 we elaborate on the background.

In Sect. 3 we explain our approach and in Sect. 4 we evaluate it. The validity of

the evaluation is discussed in Sect. 5. After considering related work in Sect. 6 we

conclude the paper in Sect. 7.

2 Background

Context-oriented programming (COP) enables us to naturally separate multi-dimen-

sional concerns [5, 23, 25]. In some sense it extends object-oriented programming.

Activation and deactivation of layers belong to its main concepts. Every layer rep-

resents a dimension of context that cuts across the system. All active layers together

form the context the program currently is in.

The (de)activation of layers occur at any time during program execution. A cur-

rently active stack of layers determines the context the program or thread is in. COP

allows us to specify programs with adaptable, dynamic behavior. Later approaches

[27] go beyond object-oriented programming: they support program construction

with layers only. Furthermore, later work considers software engineering perspec-

tives [23] and modularity visions [13].

Tanter suggested a lightweight subset of COP: Contextual values. They are easier

to understand because they “boil down to a trivial generalization of the idea of thread-

local values” [26]. They are variables whose values depend on the current context.

Contextual values originate from COP and naturally work along with the concepts

of dynamic scoping and layers.

For newly written context-aware software, COP is a viable choice. For legacy

software, however, rewriting seems unrealistic. So in this paper we introduce a new

approach that does not require modifications of the application.

3 EnvElektra

In our approach, we want to intercept every call to the getenv API. Whenever an

application calls the API, we want to invoke a context-aware implementation instead.

EnvElektra, which is our research tool, contains such a getenv() implementa-

tion. The implementation contains a novel matching algorithm for context awareness.

When EnvElektra is installed and activated on a system, the matching algorithm will

be used for every call of getenv() done by any application.

44 M. Raab

Fig. 1 Architecture of EnvElektra. The common data structure is a set of key/value pairs (middle).

Bold, blue boxes need to be provided by users of EnvElektra

The basic idea of EnvElektra’s getenv() implementation is as follows: First,

it ensures that the data structure is up-to-date. Second, the matching algorithm cal-

culates a new key for the parameter of getenv() using the context specification.

Third, this key is searched in the data structure. With the found key, we recursively

descend until every relevant context is considered.

The library LibElektra [20] (shown in Fig. 1) maps the program execution envi-
ronments (e.g., command-line arguments and configuration files) to the in-memory

key/value pairs. LibElektra includes start-up code that initializes all key/value pairs

from a key database. The key database is modular via plugins [17]. The plugins allow

us to use different syntax for configuration files.

Figure 1 also depicts the EnvElektra architecture. The system with EnvElektra

has to provide three artifacts (bold, blue boxes): (1) unmodified applications that

become context-aware, (2) context specifications, and (3) context sensors for out-of-

process layer (de)activation. In the remainder of this chapter we will explain the user-

provided artifacts and the matching algorithm. Finally, we will give a full example

demonstrating how the system works interconnected.

3.1 Context Sensors

An essential issue to enjoy global, context-aware configuration access without mod-

ifying the application is an out-of-process layer (de)activation. We will show why

such context sensors require us to use a database.

Unanticipated Context Awareness for Software Configuration . . . 45

The original function getenv() retrieves values from the environment. Inter-

nally, it uses the data structure char** environ. By design, environ is copied

into every process and will not receive any external changes afterwards. Thus,

environ cannot consider out-of-process changes and cannot be used in EnvElek-

tra.

We prefer to use configuration files that are read by the application itself. Then

security is correctly handled by the operating system. In EnvElektra the administra-

tor decides which configuration files are used, possibly with different syntax for each

file [19]. EnvElektra makes sure that all applications have the same global view of

the system’s configuration files leading to a consistently configured system. This way

values returned by getenv() will not be different from values retrieved from con-

figuration files. The configuration files are viewed as a key/value database suitable

for getenv lookups.

Context sensors observe the system and change the database when they detect

context changes. They are responsible to modify the layers accordingly. Context

sensors write their layer information into /env/layer. The key /env/layer
is part of the database and resides within one of the configuration files. The use

of files enables out-of-process communication between context sensor and applica-

tions. Thus, context changes can have an immediate effect on applications.

We identified two different kinds of context sensors to be used with our approach:

Information within the Database: Quite often, the necessary value is already

present in the database. For example, in Linux many syscalls and the /sys-file

system already provide much information. Using plugins, these sources are easily

embedded within the database. Then we only need a symbolic link from /env/
layer to the correct key. For example, if /env/layer/nodename points to

/syscall/uname/ nodename, then %nodename% will resolve to the node-

name as returned by the uname system call. In EnvElektra we mount plugins into

any part of the hierarchy [17].

Context Sensor Daemons: In other cases, we implement a daemon, i.e. an active

process, that updates /env/layer. Doing so, we can implement hysteresis, value

transformations, and even complex feedback control systems. For example, to update

%inpocket% a daemon measures the temperatures and modifies /env/layer/
inpocket whenever we cross a threshold value. Changes in the database influence

all processes across the whole system.

3.2 Context Specification

Up to now, we have established a database that contains key/value pairs to be used

in a getenv() implementation. We have to make the database context-aware with

the layer-information present in /env/layer, e.g.:

/env/layer/inpocket = notinpocket

46 M. Raab

Furthermore, we specify which key is used in which contextual interpretation:

[/ phone/call/vibration]
type=boolean
context =/ phone/call/% inpocket %/ vibration

Now, when an API accesses /phone/call/vibration, the lookup layer

will search for /phone/call/%inpocket%/vibration. Layer interpreta-

tions are stored in the database below the key /env/layer. In this case the cor-

rect contextual interpretation of %inpocket% is notinpocket. Using more than

one placeholder creates several dimensions of variability. Late-binding is necessary

so that unmodified software benefit from contextual features. EnvElektra needs to

resolve its context awareness as late as possible, i.e., on getenv() calls.

For example, if a phone-call application executes getenv("vibration")
it will look up /phone/call/vibration. Because of the context specifi-

cation, we know we want the key /phone/call/%inpocket%/vibration
instead. For the correct interpretation of %inpocket% we will lookup /env/
layer/inpocket first. We get the value notinpocket for the layer

%inpocket%. Thus, getenv("vibration") will return the value of

/phone/call/notinpocket/vibration.

3.3 Matching Algorithm

The core of our approach is the contextual lookup within our alternative implemen-

tation of the getenv API. In EnvElektra getenv() provides the context-aware

variability. The essence of EnvElektra’s getenv() implementation is:

char* getenv(char* key) {
if(needsReload(conf)) {

reloadConfiguration(conf);
reloadLayers(conf);

}
return contextLookup(conf , key);

}

Context is not static but dynamically changes over time. Our approach supports

dynamic changes of context using reloadLayers() even though the original

getenv implementation did not. The interception approach limits us to context-

changes within getenv(): We cannot (de)activate layers at other places. Instead,

we make sure that for every contextLookup() the correct context is used. The

matching algorithm contextLookup() is recursively defined:

Unanticipated Context Awareness for Software Configuration . . . 47

char* contextLookup (KeySet* cfg , char* key) {
m = lookupBySpecification (cfg , key , "context");
if (m) return contextLookup (cfg , fix(m));
else return lookup (cfg , key);

}

The idea of the algorithm is: First, we look whether a context is specified for the

key. If it is, contextLookup descends recursively after replacing all placeholders

in the key. If it is not, a ordinary lookup will be used. The full implementation features

namespaces, symbolic links and defaults [19].

3.4 Example

We present a full example that demonstrates recursion with several layers. Suppose

a mobile phone is lying on the table in a building during a meeting. To simplify the

example, we assign constant values to the layers:

/env/layer/inpocket = notinpocket
/env/layer/inbuilding = inbuilding
/env/layer/inmeeting = inmeeting

In a real system, a sensor will continuously update the values. So far, we already

discussed the layer inpocket. The layer inbuilding represents a value from a

location context. Layers such as inmeeting are called virtual sensors [1]. In this

case the value of the layer is calculated by a sensor querying the person’s schedule.

The application running on the phone uses the following non-context-aware code:

char* use_vibration = getenv("vibration");
if (! strcmp(use_vibration , "on")) {/* activate vibration */}

We add context awareness with the following specification:

[/ phone/call/vibration]
type=boolean
context =/ phone/call/% inbuilding %/ vibration

[/ phone/call/inbuilding/vibration]
type=boolean
context =/ phone/call/% inpocket %/% inmeeting %/ vibration

[/ phone/call/notinbuilding/vibration]
type=boolean
context =/ phone/call/% handsfree %/ vibration

Due to lack of space, we here specify only two of the six possible configurations:

/phone/call/inpocket/inmeeting/vibration = on
/phone/call/notinpocket/inmeeting/vibration = off

48 M. Raab

Suppose the mobile phone gets a call. By above getenv we request to lookup

/phone/call/vibration to know whether vibration is turned on. In the first

step, it will find the context and resolve inbuilding. In the next step, it

will recursively search in the specification again, and find another context with

/phone/call/ %inpocket%/%inmeeting%/vibration. Then the place-

holders are again replaced with the respective values. Resolving this key, the algo-

rithm will not find another matching specification. Thus, it returns the configura-

tion value of not in pocket and in meeting, i.e., /phone/call/notinpocket/
inmeeting/vibration. Because this configuration value is off, the phone

will not vibrate.

4 Evaluation

Our methodological foundation is built on “theory of cases” [6, 7]. Other research

should supplement our work with further case and user studies.

We chose 16 popular systems for evaluation (as discussed in threats to validity

in Sect. 5). We will solely focus on existing applications and their integration into a

coherent system.

The evaluation was conducted on different machines using Debian GNU/Linux

Jessie 8.1 amd64. For the evaluation we globally intercept getenv() using

/etc/ld .so.preload. By listing EnvElektra in /etc/ld.so.preload it

will be loaded before any other library. Thus its symbols will be preferred. Because

of this preference EnvElektra will be used for every getenv()-call.

In each of the following subsections, we will answer one of the questions:

RQ1: What are the usage patterns of getenv() in popular applications?

RQ2: For which applications can we actually exploit getenv() to be used for

unanticipated context awareness? What are the fundamental limitations?

RQ3: What is the overhead that occurs in a system using EnvElektra?

4.1 RQ1: Usage Patterns

Only APIs that are actually called during runtime can be exploited for context aware-

ness. To learn more about usage patterns, we count how often getenv(key) is

executed.

Unanticipated Context Awareness for Software Configuration . . . 49

lines of code: Count lines of code with the tool cloc.

getenv all: Count all calls to getenv while using the application.

getenv init: Count all calls to getenv while starting the application.

all unique: From all getenv calls, how many different keys were used?

later unique: From getenv calls after initialization, how many different keys were

used? For wget and curl the first download counts as initialization.

same: From the getenv calls during startup (during runtime an arbitrary high number

could be acquired), what is the maximum number of queries with the same value

for the parameter key?

To interpret the numbers correctly we have to know that the usage patterns

vary widely even for the same application. For example, firefox started within

GNOME requests 11 GNOME specific and 8 GTK specific environment variables

(like G_DEBUG). If executed on a system with OpenGL enabled, 43 additional envi-

ronment variables (like __GL_EVENT_LOGLEVEL) are used to determine OpenGL

configurations. Additionally, the tested system requested three vendor (NV) specific

variables. For KDE, KDE_FULL_SESSION was used as detection. Then 8 more

KDE-specific and 15 more QT-specific environment variables were requested if

started within KDE. Thus, the numbers depend on the desktop environment and

hardware.

50 M. Raab

For better reproducibility, we freshly installed Debian Jessie KDE and GNO-

ME variants, respectively. The only modification was the installation of EnvElektra.

For example, on a daily used KDE with many installed applications, we measured

210.276 getenv() during startup, which is 21 more than with a freshly installed

KDE. We see that the numbers also depend on the installed software.

The above 13 applications request an average of 2969 environment values (2790

median). Akonadi, configured to use IMAP, had the highest number of calls to

getenv. The reason seems to be a potential misuse of a libc function which

requested LANGUAGE 5126 times. During the KDE startup 27 % of all getenv
calls were LANGUAGE. We conclude that excessive use can be unintentional.

From the numbers in the table we conclude that getenv() is used extensively in

all examined applications. Applications often reread environment parameters during

user interactions. This statement is true for both large applications and small helper

tools. As expected, large feature-rich applications request much more environment

variables. The ratios of requested and unique environment variables varies greatly:

it is 14 % median, and in akonadi it is ∼1%. We see that applications tend to request

the same variables often.

Our findings regarding RQ1 are:

(1) We quantitatively show that getenv() is pervasive. We think that the

usage patterns stem from a rather random use of getenv(): variability seems

to be added ad-hoc whenever single developers needed it. Because getenv()
has no noticeable performance implication and typically is not unit-tested, it is

likely that quality assurance will not find unnecessary occurrences.

(2) Based on our observation, getenv() is used frequently after startup.

Implications: Developers seem to not optimize calls to getenv(). The

resulting high number of getenv()-calls open up possibilities to influence

the behavior of applications on context changes.

RQ2: Unanticipated Context Awareness
We already showed that the use of getenv() is pervasive, even after startup.

Now, we want to find out whether changes in the context—and thus in the variables

returned by getenv()—actually have an influence on the behavior.

We found that in help-, save- and open-dialogs different values returned by

getenv() often influence the behavior of the application in a way easily vis-

ible to the user. These environment variables often have immediate and visible

impact when changed dynamically. For example, gimp uses for every open dia-

log G_FILENAME_ENCODING and for every help dialog GIMP2_HELP_URI. On

context changes, e.g. when we enter another network or mount a new file system, the

software can automatically be adapted with EnvElektra.

Now, we investigate context awareness of proxy settings. A user changing the net-

work with a different proxy should be able to continue browsing. lynx requests and

correctly uses http_proxy for every single page. curl has the same behavior and

reloads 7 additional environment variables every time. wget gives less control per

Unanticipated Context Awareness for Software Configuration . . . 51

download but still requests http_proxy for every page in recursive download-

ing mode. Firefox uses the proxy for most pages but pages in cache are displayed

even when the proxy is unreachable. Chromium is the only browser not rereading

http_proxy. Instead, it requests many internals such as GOOGLE_API_KEY dur-

ing run-time. EnvElektra supports http_proxy well.

Our approach is very successful whenever an application executes other pro-

grams because during the startup of the programs the whole environment is always

requested and used. Many programs use a pager or editor as external program. For

example, man executes a pager for every displayed manpage.

For some applications it is possible to specify a configuration file using an envi-

ronment variable. In EnvElektra configuration files can be mounted. Then they are a

part of the database, which permits full configurability. For example, less executed

within man uses the environment variable LESSKEY. In such cases our approach

provides seamless context-aware configuration.

Some getenv() calls, however, do not have any user-visible impact. Instead,

they seem to be left-overs. In LibreOffice, WorkDirMustContainRemovable
Media is obviously a workaround for a very specific problem. It is not docu-

mented and searching the web for it only reveals the use in the source code. Instead,

OOO_ENABLE_LOCALE_DATA_CHECKS is an announced workaround. In GTK

GTK_TEST_TOUCHSCREEN is requested extensively. According to the commit log

it was explicitly introduced as a test feature.

Sometimes recurring getenv cannot be exploited to improve context aware-

ness. For example, LANGUAGE is requested very often but does not influence the

user-interface after startup. Here changes at runtime seem to have no impact. Such

environment variables will only be context-aware during the start of an application.

A limitation of our approach is the impossibility to detect unwanted changes of

environment variables. For example, the environment variable CC can change dur-

ing compilation. Obviously, this easily leads to inconsistent compilation and link-

ing. In EnvElektra the runtime-context-change feature can easily be (de)activated

for process hierarchies, though.

Not a single crash occurred in our experiments regardless of which values we

modified. This behavior is not entirely surprising: First, software should validate

values returned fromgetenv(). Thus, wrong values fromgetenv() are rejected.

Second, we did no systematic stress testing but only searched for useful changes.

Our findings regarding RQ2 are:

(1) We show that many practical use cases exist where context changes are

applied successfully at runtime.

(2) Limitations include that some getenv() calls do not have visible

impact and that context switches in rare cases lead to incorrect behavior.

Implications: EnvElektra increases the context awareness for the evaluated

applications. Specific functionality is even flawlessly context-aware.

52 M. Raab

RQ3: Overhead
Finally, we want to evaluate whether the overhead of EnvElektra is acceptable. The

benchmarks were conducted on a hp
®

EliteBook 8570 w using the central processor

unit Intel
®

Core
™

i7-3740QM @ 2.70 GHz. Overhead is measured with valgrind by

running the executable without and with EnvElektra.

The glibc getenv() implementation linearly searches through the whole envi-

ronment. On the one hand, our implementation does not have this constraint. Its

complexity is O(log(n)) compared to O(n) for environ iteration. We do not use

unordered hash maps because we need lexically ordered iteration, e.g. to iterate over

all layers and during reloadConfiguration(). On the other hand, the con-

textual lookup involves recursion. Depending on the specification EnvElektra needs

additional nested lookups.

In a benchmark we compared 1,000,000 getenv() calls with the same number

of EnvElektra’s lookups. We did 11 measurements and report the median value. For

a small number (30) of environment variables, standard getenv() implementa-

tions (0.03 s) clearly outperform EnvElektra’s lookup (0.06 s). For 100 environment

variables (which is a typical value) they perform equally well: 0.076 s for standard

getenv() and 0.073 s for EnvElektra’s lookup. For more than 100 environment

variables, EnvElektra’s lookup outperforms getenv().

Regarding the overall overhead, we first report about the diversity of the applica-

tions. For the startup of gimp the overhead of 2.6 % is negligible. For the startup of

firefox, however, the overhead is 6.5 %. The reason is that Firefox performs exec()
5 times during startup. Then EnvElektra needs to be initialized and needs to parse its

configuration files again. For very small applications, e.g. curl and wget, the pars-

ing strongly affects the runtime overhead. If they download empty files, the overhead

even dominates. The overhead between different applications varies greatly.

Next, we were interested in the impact on a system which executes many processes

each with trivial tasks. An extreme example happens to be the compilation of C soft-

ware projects with gcc. Because gcc spawns 5 subprocesses for the compilation of

every .c file, the overhead seems to get immense. Actually, the overhead of a triv-

ial program’s compilation, only containing int main(), is 90 %. The parsing of

configuration files gets dominant. It is astonishing that the overhead of a compila-

tion for a full project is only 14 %. For this benchmark we compiled EnvElektra from

scratch. The absolute times are 2:23 min total when compiling with EnvElektra and

2:05 min total without EnvElektra as measured with the time utility. The compi-

lation executed 6847 processes, did 30862 getenv calls, 6199 of which contained

CC. Even though trivial process executions have large overhead, the overall perfor-

mance only suffers little, even in extreme cases.

We further were very interested in any other occurrence with a similar number of

many process executions. The booting of Debian executes 732 processes. The most

often requested environment variable was SANE_DEBUG_SANEI_SCSI with 286

occurrences. In the script startkde, 227 binaries are executed. The executed num-

ber of processes in the case of compilation actually seems to represent an exception.

We conclude that occurrences where processes are spawned excessively are rare.

Unanticipated Context Awareness for Software Configuration . . . 53

Finally, we want to discuss the overhead of the reload feature. We chose the fol-

lowing setup: We installed the webserver lighttpd locally. EnvElektra was active

throughout the whole experiment. To download 10 files with 1MB to 10MB size each

we executed curl -o"#1 http://localhost/test/[1-10]". Without

reloading this execution resulted in 83,786,947 instructions. With reloading EnvElek-

tra every millisecond, valgrind counted 91,569,790 instructions. The reloading

caused the configuration to be fetched 91 times instead of 4 times. Because of an

optimization within EnvElektra only stat is used on the configuration files with-

out parsing them again. Thus, the overhead is only 9.3 %.

Different to the benchmark setup above we will now change the database once

during program execution. Then EnvElektra will reread the respective configuration

file. We have to take care that the changed value does not influence the control flow.

For example, if we add the no_proxy variable, proxy setup is skipped and the

performance even increases. Thus, we changed COLUMNS, which is requested for

every download but does not influence the overhead more than unrelated parameters.

When changing it during one of the ten requests the execution needed 95,248,722

instructions. We see that actual context changes have acceptable overhead of ∼4%.

Our findings regarding RQ3 are:

(1) In applications that terminate very soon, e.g. only showing help text, the

run-time overhead dominates. In practical use, however, EnvElektra only adds

run-overhead from 2.6 to 14 % (in extreme but realistic cases).

(2) Dynamic reload has about 10 % overhead. On context changes the over-

head increases again by about 4 % in a realistic http-proxy-transition.

Implications: EnvElektra’s run-time overhead typically is low and thus

acceptable. For frequent context changes, optimizations would be preferable.

5 Threats to Validity

As in all quantitative studies our concern is if the evaluated software is represen-

tative. In RQ1 we address it by using a significant number of diverse open-source

software in terms of functionality, development teams and programming languages.

We did not consider context awareness already present in applications. Although

interception also works for closed-source software, we did not study it because of

the impossibility to cross-check with source code. Anyhow some of the software,

including libreoffice, chromium and eclipse, has at least origins in closed-source

development. Thus, the results can be valid for closed-source software, too. While

we think that the software we inspected represents some characteristics of variability

APIs, more general conclusions need further work.

In the methodology of RQ2, we need to interpret whether contextual awareness

can be exploited. We avoid subjective judgements about context awareness during

54 M. Raab

program start. One could also modify the environment with a wrapper script to

achieve similar results. We prefer to examine dynamic context changes which are

impossible with former approaches. To improve reproducibility and objectivity we

only consider visible changes in the user interface.

We exclusively measure calls of getenv but do not consider the use of the

environ pointer, the third parameter of main, and /proc. We cannot guarantee

full coverage. Therefore our evaluation actually underestimates the full potential.

We added optional logging to count the number of getenv. Logging, however,

influences a system deeply. On one system two start-processes failed when logging

was activated. We did not find other occurrences that caused differences in behavior.

Thus, we always rerun our tests without logging.

The benchmarks are conducted comparatively and consider only a single imple-

mentation of getenv. Therefore run-time measurements may not apply for other

versions or OSs. Additionally, the benchmarks yield very different results depending

on the size of the used configuration files and the respective parser. To level out this

problem, we took care that our setup is realistic. We used 8 different configuration

files and especially chose parsers which are known to be slow. We think that it is

straight-forward to reproduce our benchmarks in a way that they perform even better

than the numbers we reported.

Overall, while we cannot draw general conclusions for context-aware configu-

ration access in the getenv API, we think that our study unveils some important

insights, particularly for open source software.

6 Related Work

Riva et al. [22] acquired software-engineering-related knowledge from studying

context-aware software. Different from our approach, they reverse-architected exist-

ing context-aware support systems. We preferred to study the behaviour of well-

known software when introducing context awareness.

Context-aware middleware [8, 9] is a well-established research direction.

EnvElektra could be seen as local context-aware middleware for configuration.

EnvElektra scores in situations where legacy software needs to be deployed.

Using the correct context is a subtopic of avoiding configuration errors. Yin et al.

[28] researched different types of configuration-parameter-related mistakes. They

investigated value-environment mistakes which can be caused by wrong contextual

interpretation. Which errors actually are induced by incorrect contextual interpreta-

tion, however, is still an open question.

A lot of work exists about how to extract program configuration constraints from

source code [15, 21]. The authors argue that even though many constraints are

extracted, sometimes additional external knowledge is needed. We think that con-

text awareness is such a constraint.

Context-oriented programming (COP) already has an important role within

software-engineering [1, 12, 23]. COP mainly aims at more comprehensible pro-

Unanticipated Context Awareness for Software Configuration . . . 55

grams expressing more context awareness. Our approach tackles the problem in a

different direction: We add context awareness without changing the program.

Previous work [18] describes context-awareness by using explicit layer activa-

tions. Other than our approach, these methods cannot be used for already existing

applications.

Niu et al. [16] report on a web-based framework which uses indoor location,

which is an important context sensor. Software product line engineering [2, 24]

deals with the question how to construct products by combining features. Configu-

ration specification languages [10, 11] rarely have support for context. An exception

is the context oriented component model PCOM [14]. Unlike our approach, these

approaches cannot be used for already existing applications.

Yuan et al. [29] provided a quantitative characteristic study for software logging.

Similar to our study they revealed that their object of study is used in four large

open-source applications pervasively. Different to our approach, they researched how

logging statements were introduced and changed, while we show how APIs for vari-

ability are intercepted for more context awareness.

7 Conclusion

In this paper, we described a context-aware database using configuration files. A

getenv implementation uses it for context-aware configuration access. Applica-

tions facilitating this API profit from context awareness. Our approach is unique

because it allows applications to be context-aware without any modifications.

We saw that getenv() in most software provides excessive variability which is

currently underutilized. This variability benefits from context awareness. The paper

gives ideas for programmers how getenv() can be used with more efficacy. Some-

times software is even capable to dynamically adapt to context changes even though

the authors did not anticipate this use. In a benchmark we found out that while in

small synthetic benchmarks the overhead might be devastating, in practice it stays

well with reasonable bounds.

Our results are:

∙ Presentation of an approach in which applications are more aware of their context

∙ A novel context-aware getenv() implementation downloadable from

http://www.libelektra.org.

∙ Providing experimental validation by a case study of significant complexity.

Acknowledgments I would like to thank Franz Puntigam, Helmut Toplitzer, Christian Amsss,

Nedko Tantilov and the anonymous reviewers for a detailed review of this paper. Many thanks

especially to Natalie Kukuczka and Elisabeth Raab.

http://www.libelektra.org

56 M. Raab

References

1. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. J. Ad Hoc

Ubiquit. Comput. 2(4), 263–277 (2007)

2. Berger, T., Lettner, D., Rubin, J., Grünbacher, P., Silva, A., Becker, M., Chechik, M., Czarnecki,

K.: What is a feature?: a qualitative study of features in industrial software product lines. In:

Proceedings of the 19th International Conference on Software Product Line, pp. 16–25. ACM

(2015)

3. Bockisch, C., Kanthak, S., Haupt, M., Arnold, M., Mezini, M.: Efficient control flow quantifi-

cation. In: ACM SIGPLAN Notices, vol. 41, pp. 125–138. ACM (2006)

4. Costanza, P., Hirschfeld, R., De Meuter, W.: Efficient layer activation for switching context-

dependent behavior. In: Lightfoot, D., Szyperski, C. (eds.) Modular Programming Languages,

Lecture Notes in Computer Science, vol. 4228, pp. 84–103. Springer (2006). http://dx.doi.org/

10.1007/11860990_7

5. Dey, A.K., Abowd, G.D.: The what, who, where, when, why and how of context-awareness.

In: CHI ’00 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’00. ACM,

NY (2000). ftp://ftp.cc.gatech.edu/pub/gvu/tr/1999/99-22.pdf

6. Easterbrook, S., Singer, J., Storey, M.A., Damian, D.: Selecting empirical methods for software

engineering research. In: Shull, F., Singer, J., Sjøberg, D. (eds.) Guide to Advanced Empirical

Software Engineering, pp. 285–311. Springer (2008). http://dx.doi.org/10.1007/978-1-84800-

044-5_11

7. Eisenhardt, K.M., Graebner, M.E.: Theory building from cases: opportunities and challenges.

Acad. Manag. J. 50(1), 25–32 (2007)

8. Geihs, K., Barone, P., Eliassen, F., Floch, J., Fricke, R., Gjorven, E., Hallsteinsen, S., Horn,

G., Khan, M.U., Mamelli, A., Papadopoulos, G.A., Paspallis, N., Reichle, R., Stav, E.: A com-

prehensive solution for application-level adaptation. Softw. Pract. Exp. 39(4), 385–422 (2009).

http://dx.doi.org/10.1002/spe.900

9. Gu, T., Pung, H.K., Zhang, D.Q.: A middleware for building context-aware mobile services.

In: Vehicular Technology Conference, 2004. VTC 2004-Spring. 2004 IEEE 59th, vol. 5, pp.

2656–2660. IEEE (2004)

10. Günther, S., Cleenewerck, T., Jonckers, V.: Software variability: the design space of configu-

ration languages. In: Proceedings of the 6th Workshop on Variability Modeling of Software-

Intensive Systems, pp. 157–164. ACM (2012)

11. Hewson, J.A., Anderson, P., Gordon, A.D.: A declarative approach to automated configuration.

LISA 12, 51–66 (2012)

12. Jong-yi, H., Eui-ho, S., Sung-Jin, K.: Context-aware systems: a literature review and classi-

fication. Expert Syst. Appl. 36(4), 8509–8522 (2009). http://dx.doi.org/10.1016/j.eswa.2008.

10.071

13. Kamina, T., Aotani, T., Masuhara, H., Tamai, T.: Context-oriented software engineering: a

modularity vision. In: Proceedings of the 13th International Conference on Modularity. MOD-

ULARITY ’14, pp. 85–98. ACM, New York, NY, USA (2014)

14. Magableh, B., Barrett, S.: Primitive component architecture description language. In: 2010

The 7th International Conference on Informatics and Systems (INFOS), pp. 1–7 (2010)

15. Nadi, S., Berger, T., Kästner, C., Czarnecki, K.: Mining configuration constraints: Static analy-

ses and empirical results. In: Proceedings of the 36th International Conference on Software

Engineering, ICSE 2014, pp. 140–151. ACM, New York, NY, USA (2014). doi:10.1145/

2568225.2568283

16. Niu, L., Saiki, S., Matsumoto, S., Nakamura, M.: Wif4inl: Web-based integration framework

for indoor location. Int. J. Pervasive Comput. Commun. (2016)

17. Raab, M.: A modular approach to configuration storage. Master’s thesis, Vienna University of

Technology (2010)

18. Raab, M.: Global and thread-local activation of contextual program execution environments.

In: Proceedings of the IEEE 18th International Symposium on Real-Time Distributed Com-

puting Workshops (ISORCW/SEUS), pp. 34–41 (2015). doi:10.1109/ISORCW.2015.52

http://dx.doi.org/10.1007/11860990_7
http://dx.doi.org/10.1007/11860990_7
ftp://ftp.cc.gatech.edu/pub/gvu/tr/1999/99-22.pdf
http://dx.doi.org/10.1007/978-1-84800-044-5_11
http://dx.doi.org/10.1007/978-1-84800-044-5_11
http://dx.doi.org/10.1002/spe.900
http://dx.doi.org/10.1016/j.eswa.2008.10.071
http://dx.doi.org/10.1016/j.eswa.2008.10.071
http://dx.doi.org/10.1145/2568225.2568283
http://dx.doi.org/10.1145/2568225.2568283
http://dx.doi.org/10.1109/ISORCW.2015.52

Unanticipated Context Awareness for Software Configuration . . . 57

19. Raab, M.: Sharing software configuration via specified links and transformation rules. In:

Technical report from KPS 2015. Vienna University of Technology, Complang Group, vol.

18 (2015)

20. Raab, M., Puntigam, F.: Program execution environments as contextual values. In: Proceedings

of 6th International Workshop on Context-Oriented Programming, pp. 8:1–8:6. ACM, NY,

USA (2014). http://dx.doi.org/10.1145/2637066.2637074

21. Rabkin, A., Katz, R.: Static extraction of program configuration options. In: 2011 33rd Inter-

national Conference on Software Engineering (ICSE), pp. 131–140. IEEE (2011)

22. Riva, O., di Flora, C., Russo, S., Raatikainen, K.: Unearthing design patterns to support

context-awareness. In: Fourth Annual IEEE International Conference on Pervasive Computing

and Communications Workshops, 2006. PerCom Workshops 2006, pp. 5–387 (2006). http://

dx.doi.org/10.1109/PERCOMW.2006.138

23. Salvaneschi, G., Ghezzi, C., Pradella, M.: Context-oriented programming: A software engi-

neering perspective. J. Syst. Softw. 85(8), 1801–1817 (2012). http://dx.doi.org/10.1016/j.jss.

2012.03.024

24. Schaefer, I., Hähnle, R.: Formal methods in software product line engineering. IEEE Comput.

44(2), 82–85 (2011)

25. Schippers, H., Molderez, T., Janssens, D.: A graph-based operational semantics for context-

oriented programming. In: Proceedings of the 2nd International Workshop on Context-

Oriented Programming, COP ’10. ACM, NY, USA (2010). doi:10.1145/1930021.1930027

26. Tanter, E.: Contextual values. In: Proceedings of the 2008 Symposium on dynamic languages,

DLS ’08, pp. 3:1–3:10. ACM, NY, USA (2008). doi:10.1145/1408681.1408684

27. von Löwis, M., Denker, M., Nierstrasz, O.: Context-oriented programming: Beyond layers.

In: Proceedings of the 2007 International Conference on Dynamic Languages, ICDL ’07, pp.

143–156. ACM, NY, USA (2007). http://dx.doi.org/10.1145/1352678.1352688

28. Yin, Z., Ma, X., Zheng, J., Zhou, Y., Bairavasundaram, L.N., Pasupathy, S.: An empirical study

on configuration errors in commercial and open source systems. In: Proceedings of the Twenty-

Third ACM Symposium on Operating Systems Principles, SOSP ’11, pp. 159–172. ACM, New

York, NY, USA (2011). doi:10.1145/2043556.2043572

29. Yuan, D., Park, S., Zhou, Y.: Characterizing logging practices in open-source software. In: Pro-

ceedings of the 34th International Conference on Software Engineering, ICSE ’12, pp. 102–

112. IEEE Press, Piscataway, NJ, USA (2012). http://dl.acm.org/citation.cfm?id=2337223.

2337236

http://dx.doi.org/10.1145/2637066.2637074
http://dx.doi.org/10.1109/PERCOMW.2006.138
http://dx.doi.org/10.1109/PERCOMW.2006.138
http://dx.doi.org/10.1016/j.jss.2012.03.024
http://dx.doi.org/10.1016/j.jss.2012.03.024
http://dx.doi.org/10.1145/1930021.1930027
http://dx.doi.org/10.1145/1408681.1408684
http://dx.doi.org/10.1145/1352678.1352688
http://dx.doi.org/10.1145/2043556.2043572
http://dl.acm.org/citation.cfm?id=2337223.2337236
http://dl.acm.org/citation.cfm?id=2337223.2337236

	Unanticipated Context Awareness for Software Configuration Access Using the getenv API
	1 Introduction
	2 Background
	3 EnvElektra
	3.1 Context Sensors
	3.2 Context Specification
	3.3 Matching Algorithm
	3.4 Example

	4 Evaluation
	4.1 RQ1: Usage Patterns

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References

